NumCpp
2.12.1
A Templatized Header Only C++ Implementation of the Python NumPy Library
|
Functions | |
template<typename GeneratorType = std::mt19937> | |
NdArray< bool > | bernoulli (GeneratorType &generator, const Shape &inShape, double inP=0.5) |
template<typename GeneratorType = std::mt19937> | |
bool | bernoulli (GeneratorType &generator, double inP=0.5) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | beta (GeneratorType &generator, const Shape &inShape, dtype inAlpha, dtype inBeta) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | beta (GeneratorType &generator, dtype inAlpha, dtype inBeta) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | binomial (GeneratorType &generator, const Shape &inShape, dtype inN, double inP=0.5) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | binomial (GeneratorType &generator, dtype inN, double inP=0.5) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | cauchy (GeneratorType &generator, const Shape &inShape, dtype inMean=0, dtype inSigma=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | cauchy (GeneratorType &generator, dtype inMean=0, dtype inSigma=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | chiSquare (GeneratorType &generator, const Shape &inShape, dtype inDof) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | chiSquare (GeneratorType &generator, dtype inDof) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | choice (GeneratorType &generator, const NdArray< dtype > &inArray) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | choice (GeneratorType &generator, const NdArray< dtype > &inArray, uint32 inNum, Replace replace=Replace::YES) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | discrete (GeneratorType &generator, const NdArray< double > &inWeights) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | discrete (GeneratorType &generator, const Shape &inShape, const NdArray< double > &inWeights) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | exponential (GeneratorType &generator, const Shape &inShape, dtype inScaleValue=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | exponential (GeneratorType &generator, dtype inScaleValue=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | extremeValue (GeneratorType &generator, const Shape &inShape, dtype inA=1, dtype inB=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | extremeValue (GeneratorType &generator, dtype inA=1, dtype inB=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | f (GeneratorType &generator, const Shape &inShape, dtype inDofN, dtype inDofD) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | f (GeneratorType &generator, dtype inDofN, dtype inDofD) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | gamma (GeneratorType &generator, const Shape &inShape, dtype inGammaShape, dtype inScaleValue=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | gamma (GeneratorType &generator, dtype inGammaShape, dtype inScaleValue=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | geometric (GeneratorType &generator, const Shape &inShape, double inP=0.5) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | geometric (GeneratorType &generator, double inP=0.5) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | laplace (GeneratorType &generator, const Shape &inShape, dtype inLoc=0, dtype inScale=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | laplace (GeneratorType &generator, dtype inLoc=0, dtype inScale=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | lognormal (GeneratorType &generator, const Shape &inShape, dtype inMean=0, dtype inSigma=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | lognormal (GeneratorType &generator, dtype inMean=0, dtype inSigma=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | negativeBinomial (GeneratorType &generator, const Shape &inShape, dtype inN, double inP=0.5) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | negativeBinomial (GeneratorType &generator, dtype inN, double inP=0.5) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | nonCentralChiSquared (GeneratorType &generator, const Shape &inShape, dtype inK=1, dtype inLambda=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | nonCentralChiSquared (GeneratorType &generator, dtype inK=1, dtype inLambda=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | normal (GeneratorType &generator, const Shape &inShape, dtype inMean=0, dtype inSigma=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | normal (GeneratorType &generator, dtype inMean=0, dtype inSigma=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | permutation (GeneratorType &generator, const NdArray< dtype > &inArray) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | permutation (GeneratorType &generator, dtype inValue) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | poisson (GeneratorType &generator, const Shape &inShape, double inMean=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | poisson (GeneratorType &generator, double inMean=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | rand (GeneratorType &generator) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | rand (GeneratorType &generator, const Shape &inShape) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | randFloat (GeneratorType &generator, const Shape &inShape, dtype inLow, dtype inHigh=0.) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | randFloat (GeneratorType &generator, dtype inLow, dtype inHigh=0.) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | randInt (GeneratorType &generator, const Shape &inShape, dtype inLow, dtype inHigh=0) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | randInt (GeneratorType &generator, dtype inLow, dtype inHigh=0) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | randN (GeneratorType &generator) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | randN (GeneratorType &generator, const Shape &inShape) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
void | shuffle (GeneratorType &generator, NdArray< dtype > &inArray) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | standardNormal (GeneratorType &generator) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | standardNormal (GeneratorType &generator, const Shape &inShape) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | studentT (GeneratorType &generator, const Shape &inShape, dtype inDof) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | studentT (GeneratorType &generator, dtype inDof) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | triangle (GeneratorType &generator, const Shape &inShape, dtype inA=0, dtype inB=0.5, dtype inC=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | triangle (GeneratorType &generator, dtype inA=0, dtype inB=0.5, dtype inC=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | uniform (GeneratorType &generator, const Shape &inShape, dtype inLow, dtype inHigh) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | uniform (GeneratorType &generator, dtype inLow, dtype inHigh) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | uniformOnSphere (GeneratorType &generator, uint32 inNumPoints, uint32 inDims=2) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
NdArray< dtype > | weibull (GeneratorType &generator, const Shape &inShape, dtype inA=1, dtype inB=1) |
template<typename dtype , typename GeneratorType = std::mt19937> | |
dtype | weibull (GeneratorType &generator, dtype inA=1, dtype inB=1) |
NdArray< bool > nc::random::detail::bernoulli | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
double | inP = 0.5 |
||
) |
Create an array of the given shape and populate it with random samples from the "bernoulli" distribution.
generator | instance of a random number generator |
inShape | |
inP | (probability of success [0, 1]). Default 0.5 |
bool nc::random::detail::bernoulli | ( | GeneratorType & | generator, |
double | inP = 0.5 |
||
) |
Single random value sampled from the "bernoulli" distribution.
generator | instance of a random number generator |
inP | (probability of success [0, 1]). Default 0.5 |
NdArray< dtype > nc::random::detail::beta | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inAlpha, | ||
dtype | inBeta | ||
) |
Create an array of the given shape and populate it with random samples from the "beta" distribution. NOTE: Use of this function requires using the Boost includes.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.beta.html#numpy.random.beta
generator | instance of a random number generator |
inShape | |
inAlpha | |
inBeta |
dtype nc::random::detail::beta | ( | GeneratorType & | generator, |
dtype | inAlpha, | ||
dtype | inBeta | ||
) |
Single random value sampled from the from the "beta" distribution. NOTE: Use of this function requires using the Boost includes.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.beta.html#numpy.random.beta
generator | instance of a random number generator |
inAlpha | |
inBeta |
NdArray< dtype > nc::random::detail::binomial | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inN, | ||
double | inP = 0.5 |
||
) |
Create an array of the given shape and populate it with random samples from the "binomial" distribution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.binomial.html#numpy.random.binomial
generator | instance of a random number generator |
inShape | |
inN | (number of trials) |
inP | (probablity of success [0, 1]) |
dtype nc::random::detail::binomial | ( | GeneratorType & | generator, |
dtype | inN, | ||
double | inP = 0.5 |
||
) |
Single random value sampled from the from the "binomial" distribution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.binomial.html#numpy.random.binomial
generator | instance of a random number generator |
inN | (number of trials) |
inP | (probablity of success [0, 1]) |
NdArray< dtype > nc::random::detail::cauchy | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inMean = 0 , |
||
dtype | inSigma = 1 |
||
) |
Create an array of the given shape and populate it with random samples from a "cauchy" distrubution.
generator | instance of a random number generator |
inShape | |
inMean | Mean value of the underlying normal distribution. Default is 0. |
inSigma | Standard deviation of the underlying normal distribution. Should be greater than zero. Default is 1. |
dtype nc::random::detail::cauchy | ( | GeneratorType & | generator, |
dtype | inMean = 0 , |
||
dtype | inSigma = 1 |
||
) |
Single random value sampled from the from the "cauchy" distrubution.
generator | instance of a random number generator |
inMean | Mean value of the underlying normal distribution. Default is 0. |
inSigma | Standard deviation of the underlying normal distribution. Should be greater than zero. Default is 1. |
NdArray< dtype > nc::random::detail::chiSquare | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inDof | ||
) |
Create an array of the given shape and populate it with random samples from the "chi square" distribution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.chisquare.html#numpy.random.chisquare
generator | instance of a random number generator |
inShape | |
inDof | (independent random variables) |
dtype nc::random::detail::chiSquare | ( | GeneratorType & | generator, |
dtype | inDof | ||
) |
Single random value sampled from the from the "chi square" distribution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.chisquare.html#numpy.random.chisquare
generator | instance of a random number generator |
inDof | (independent random variables) |
dtype nc::random::detail::choice | ( | GeneratorType & | generator, |
const NdArray< dtype > & | inArray | ||
) |
Chooses a random sample from an input array.
generator | instance of a random number generator |
inArray |
NdArray< dtype > nc::random::detail::choice | ( | GeneratorType & | generator, |
const NdArray< dtype > & | inArray, | ||
uint32 | inNum, | ||
Replace | replace = Replace::YES |
||
) |
Chooses inNum random samples from an input array.
generator | instance of a random number generator |
inArray | |
inNum | |
replace | Whether the sample is with or without replacement |
dtype nc::random::detail::discrete | ( | GeneratorType & | generator, |
const NdArray< double > & | inWeights | ||
) |
Single random value sampled from the from the "discrete" distrubution. It produces integers in the range [0, n) with the probability of producing each value is specified by the parameters of the distribution.
generator | instance of a random number generator |
inWeights |
NdArray< dtype > nc::random::detail::discrete | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
const NdArray< double > & | inWeights | ||
) |
Create an array of the given shape and populate it with random samples from a "discrete" distrubution. It produces integers in the range [0, n) with the probability of producing each value is specified by the parameters of the distribution.
generator | instance of a random number generator |
inShape | |
inWeights |
NdArray< dtype > nc::random::detail::exponential | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inScaleValue = 1 |
||
) |
Create an array of the given shape and populate it with random samples from a "exponential" distrubution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.exponential.html#numpy.random.exponential
generator | instance of a random number generator |
inShape | |
inScaleValue | (default 1) |
dtype nc::random::detail::exponential | ( | GeneratorType & | generator, |
dtype | inScaleValue = 1 |
||
) |
Single random value sampled from the "exponential" distrubution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.exponential.html#numpy.random.exponential
generator | instance of a random number generator |
inScaleValue | (default 1) |
NdArray< dtype > nc::random::detail::extremeValue | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inA = 1 , |
||
dtype | inB = 1 |
||
) |
Create an array of the given shape and populate it with random samples from a "extreme value" distrubution.
generator | instance of a random number generator |
inShape | |
inA | (default 1) |
inB | (default 1) |
dtype nc::random::detail::extremeValue | ( | GeneratorType & | generator, |
dtype | inA = 1 , |
||
dtype | inB = 1 |
||
) |
Single random value sampled from the "extreme value" distrubution.
generator | instance of a random number generator |
inA | (default 1) |
inB | (default 1) |
NdArray< dtype > nc::random::detail::f | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inDofN, | ||
dtype | inDofD | ||
) |
Create an array of the given shape and populate it with random samples from a "F" distrubution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.f.html#numpy.random.f
generator | instance of a random number generator |
inShape | |
inDofN | Degrees of freedom in numerator. Should be greater than zero. |
inDofD | Degrees of freedom in denominator. Should be greater than zero. |
dtype nc::random::detail::f | ( | GeneratorType & | generator, |
dtype | inDofN, | ||
dtype | inDofD | ||
) |
Single random value sampled from the "F" distrubution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.f.html#numpy.random.f
generator | instance of a random number generator |
inDofN | Degrees of freedom in numerator. Should be greater than zero. |
inDofD | Degrees of freedom in denominator. Should be greater than zero. |
NdArray< dtype > nc::random::detail::gamma | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inGammaShape, | ||
dtype | inScaleValue = 1 |
||
) |
Create an array of the given shape and populate it with random samples from a "gamma" distrubution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.gamma.html#numpy.random.gamma
generator | instance of a random number generator |
inShape | |
inGammaShape | |
inScaleValue | (default 1) |
dtype nc::random::detail::gamma | ( | GeneratorType & | generator, |
dtype | inGammaShape, | ||
dtype | inScaleValue = 1 |
||
) |
Single random value sampled from the "gamma" distrubution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.gamma.html#numpy.random.gamma
generator | instance of a random number generator |
inGammaShape | |
inScaleValue | (default 1) |
NdArray< dtype > nc::random::detail::geometric | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
double | inP = 0.5 |
||
) |
Create an array of the given shape and populate it with random samples from a "geometric" distrubution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.geometric.html#numpy.random.geometric
generator | instance of a random number generator |
inShape | |
inP | (probablity of success [0, 1]) |
dtype nc::random::detail::geometric | ( | GeneratorType & | generator, |
double | inP = 0.5 |
||
) |
Single random value sampled from the "geometric" distrubution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.geometric.html#numpy.random.geometric
generator | instance of a random number generator |
inP | (probablity of success [0, 1]) |
NdArray< dtype > nc::random::detail::laplace | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inLoc = 0 , |
||
dtype | inScale = 1 |
||
) |
Create an array of the given shape and populate it with random samples from a "laplace" distrubution. NOTE: Use of this function requires using the Boost includes.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.laplace.html#numpy.random.laplace
generator | instance of a random number generator |
inShape | |
inLoc | (The position, mu, of the distribution peak. Default is 0) |
inScale | (float optional the exponential decay. Default is 1) |
dtype nc::random::detail::laplace | ( | GeneratorType & | generator, |
dtype | inLoc = 0 , |
||
dtype | inScale = 1 |
||
) |
Single random value sampled from the "laplace" distrubution. NOTE: Use of this function requires using the Boost includes.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.laplace.html#numpy.random.laplace
generator | instance of a random number generator |
inLoc | (The position, mu, of the distribution peak. Default is 0) |
inScale | (float optional the exponential decay. Default is 1) |
NdArray< dtype > nc::random::detail::lognormal | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inMean = 0 , |
||
dtype | inSigma = 1 |
||
) |
Create an array of the given shape and populate it with random samples from a "lognormal" distrubution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.lognormal.html#numpy.random.lognormal
generator | instance of a random number generator |
inShape | |
inMean | Mean value of the underlying normal distribution. Default is 0. |
inSigma | Standard deviation of the underlying normal distribution. Should be greater than zero. Default is 1. |
dtype nc::random::detail::lognormal | ( | GeneratorType & | generator, |
dtype | inMean = 0 , |
||
dtype | inSigma = 1 |
||
) |
Single random value sampled from the "lognormal" distrubution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.lognormal.html#numpy.random.lognormal
generator | instance of a random number generator |
inMean | Mean value of the underlying normal distribution. Default is 0. |
inSigma | Standard deviation of the underlying normal distribution. Should be greater than zero. Default is 1. |
NdArray< dtype > nc::random::detail::negativeBinomial | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inN, | ||
double | inP = 0.5 |
||
) |
Create an array of the given shape and populate it with random samples from the "negative Binomial" distribution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.negative_binomial.html#numpy.random.negative_binomial
generator | instance of a random number generator |
inShape | |
inN | number of trials |
inP | probablity of success [0, 1] |
dtype nc::random::detail::negativeBinomial | ( | GeneratorType & | generator, |
dtype | inN, | ||
double | inP = 0.5 |
||
) |
Single random value sampled from the "negative Binomial" distribution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.negative_binomial.html#numpy.random.negative_binomial
generator | instance of a random number generator |
inN | number of trials |
inP | probablity of success [0, 1] |
NdArray< dtype > nc::random::detail::nonCentralChiSquared | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inK = 1 , |
||
dtype | inLambda = 1 |
||
) |
Create an array of the given shape and populate it with random samples from a "non central chi squared" distrubution. NOTE: Use of this function requires using the Boost includes.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.noncentral_chisquare.html#numpy.random.noncentral_chisquare
generator | instance of a random number generator |
inShape | |
inK | (default 1) |
inLambda | (default 1) |
dtype nc::random::detail::nonCentralChiSquared | ( | GeneratorType & | generator, |
dtype | inK = 1 , |
||
dtype | inLambda = 1 |
||
) |
Single random value sampled from the "non central chi squared" distrubution. NOTE: Use of this function requires using the Boost includes.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.noncentral_chisquare.html#numpy.random.noncentral_chisquare
generator | instance of a random number generator |
inK | (default 1) |
inLambda | (default 1) |
NdArray< dtype > nc::random::detail::normal | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inMean = 0 , |
||
dtype | inSigma = 1 |
||
) |
Create an array of the given shape and populate it with random samples from a "normal" distrubution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html#numpy.random.normal
generator | instance of a random number generator |
inShape | |
inMean | Mean value of the underlying normal distribution. Default is 0. |
inSigma | Standard deviation of the underlying normal distribution. Should be greater than zero. Default is 1. |
dtype nc::random::detail::normal | ( | GeneratorType & | generator, |
dtype | inMean = 0 , |
||
dtype | inSigma = 1 |
||
) |
Single random value sampled from the "normal" distrubution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html#numpy.random.normal
generator | instance of a random number generator |
inMean | Mean value of the underlying normal distribution. Default is 0. |
inSigma | Standard deviation of the underlying normal distribution. Should be greater than zero. Default is 1. |
NdArray< dtype > nc::random::detail::permutation | ( | GeneratorType & | generator, |
const NdArray< dtype > & | inArray | ||
) |
Randomly permute a sequence, or return a permuted range. If x is an integer, randomly permute np.arange(x). If x is an array, make a copy and shuffle the elements randomly.
generator | instance of a random number generator |
inArray |
NdArray< dtype > nc::random::detail::permutation | ( | GeneratorType & | generator, |
dtype | inValue | ||
) |
Randomly permute a sequence, or return a permuted range. If x is an integer, randomly permute np.arange(x). If x is an array, make a copy and shuffle the elements randomly.
generator | instance of a random number generator |
inValue |
NdArray< dtype > nc::random::detail::poisson | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
double | inMean = 1 |
||
) |
Create an array of the given shape and populate it with random samples from the "poisson" distribution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.poisson.html#numpy.random.poisson
generator | instance of a random number generator |
inShape | |
inMean | (default 1) |
dtype nc::random::detail::poisson | ( | GeneratorType & | generator, |
double | inMean = 1 |
||
) |
Single random value sampled from the "poisson" distribution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.poisson.html#numpy.random.poisson
generator | instance of a random number generator |
inMean | (default 1) |
dtype nc::random::detail::rand | ( | GeneratorType & | generator | ) |
Single random value sampled from the uniform distribution over [0, 1).
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html#numpy.random.rand
generator | instance of a random number generator |
NdArray< dtype > nc::random::detail::rand | ( | GeneratorType & | generator, |
const Shape & | inShape | ||
) |
Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1).
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html#numpy.random.rand
generator | instance of a random number generator |
inShape |
NdArray< dtype > nc::random::detail::randFloat | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inLow, | ||
dtype | inHigh = 0. |
||
) |
Return random floats from low (inclusive) to high (exclusive), with the given shape. If no high value is input then the range will go from [0, low).
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.ranf.html#numpy.random.ranf
generator | instance of a random number generator |
inShape | |
inLow | |
inHigh | default 0. |
dtype nc::random::detail::randFloat | ( | GeneratorType & | generator, |
dtype | inLow, | ||
dtype | inHigh = 0. |
||
) |
Return a single random float from low (inclusive) to high (exclusive), with the given shape. If no high value is input then the range will go from [0, low).
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.ranf.html#numpy.random.ranf
generator | instance of a random number generator |
inLow | |
inHigh | default 0. |
NdArray< dtype > nc::random::detail::randInt | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inLow, | ||
dtype | inHigh = 0 |
||
) |
Return random integers from low (inclusive) to high (exclusive), with the given shape. If no high value is input then the range will go from [0, low).
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randint.html#numpy.random.randint
generator | instance of a random number generator |
inShape | |
inLow | |
inHigh | default 0. |
dtype nc::random::detail::randInt | ( | GeneratorType & | generator, |
dtype | inLow, | ||
dtype | inHigh = 0 |
||
) |
Return random integer from low (inclusive) to high (exclusive), with the given shape. If no high value is input then the range will go from [0, low).
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randint.html#numpy.random.randint
generator | instance of a random number generator |
inLow | |
inHigh | default 0. |
dtype nc::random::detail::randN | ( | GeneratorType & | generator | ) |
Returns a single random value sampled from the "standard normal" distribution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html#numpy.random.randn
generator | instance of a random number generator |
NdArray< dtype > nc::random::detail::randN | ( | GeneratorType & | generator, |
const Shape & | inShape | ||
) |
Create an array of the given shape and populate it with random samples from the "standard normal" distribution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html#numpy.random.randn
generator | instance of a random number generator |
inShape |
void nc::random::detail::shuffle | ( | GeneratorType & | generator, |
NdArray< dtype > & | inArray | ||
) |
Modify a sequence in-place by shuffling its contents.
generator | instance of a random number generator |
inArray |
dtype nc::random::detail::standardNormal | ( | GeneratorType & | generator | ) |
Single random value sampled from the "standard normal" distrubution with mean = 0 and std = 1
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.standard_normal.html#numpy.random.standard_normal
generator | instance of a random number generator |
NdArray< dtype > nc::random::detail::standardNormal | ( | GeneratorType & | generator, |
const Shape & | inShape | ||
) |
Create an array of the given shape and populate it with random samples from a "standard normal" distrubution with mean = 0 and std = 1
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.standard_normal.html#numpy.random.standard_normal
generator | instance of a random number generator |
inShape |
NdArray< dtype > nc::random::detail::studentT | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inDof | ||
) |
Create an array of the given shape and populate it with random samples from the "student-T" distribution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.standard_t.html#numpy.random.standard_t
generator | instance of a random number generator |
inShape | |
inDof | independent random variables |
dtype nc::random::detail::studentT | ( | GeneratorType & | generator, |
dtype | inDof | ||
) |
Single random value sampled from the "student-T" distribution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.standard_t.html#numpy.random.standard_t
generator | instance of a random number generator |
inDof | independent random variables |
NdArray< dtype > nc::random::detail::triangle | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inA = 0 , |
||
dtype | inB = 0.5 , |
||
dtype | inC = 1 |
||
) |
Create an array of the given shape and populate it with random samples from the "triangle" distribution. NOTE: Use of this function requires using the Boost includes.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.triangular.html#numpy.random.triangular
generator | instance of a random number generator |
inShape | |
inA | |
inB | |
inC |
dtype nc::random::detail::triangle | ( | GeneratorType & | generator, |
dtype | inA = 0 , |
||
dtype | inB = 0.5 , |
||
dtype | inC = 1 |
||
) |
Single random value sampled from the "triangle" distribution. NOTE: Use of this function requires using the Boost includes.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.triangular.html#numpy.random.triangular
generator | instance of a random number generator |
inA | |
inB | |
inC |
NdArray< dtype > nc::random::detail::uniform | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inLow, | ||
dtype | inHigh | ||
) |
Draw samples from a uniform distribution.
Samples are uniformly distributed over the half - open interval[low, high) (includes low, but excludes high)
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html#numpy.random.uniform
generator | instance of a random number generator |
inShape | |
inLow | |
inHigh |
dtype nc::random::detail::uniform | ( | GeneratorType & | generator, |
dtype | inLow, | ||
dtype | inHigh | ||
) |
Draw sample from a uniform distribution.
Samples are uniformly distributed over the half - open interval[low, high) (includes low, but excludes high)
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html#numpy.random.uniform
generator | instance of a random number generator |
inLow | |
inHigh |
NdArray< dtype > nc::random::detail::uniformOnSphere | ( | GeneratorType & | generator, |
uint32 | inNumPoints, | ||
uint32 | inDims = 2 |
||
) |
Such a distribution produces random numbers uniformly distributed on the unit sphere of arbitrary dimension dim. NOTE: Use of this function requires using the Boost includes.
generator | instance of a random number generator |
inNumPoints | |
inDims | dimension of the sphere (default 2) |
NdArray< dtype > nc::random::detail::weibull | ( | GeneratorType & | generator, |
const Shape & | inShape, | ||
dtype | inA = 1 , |
||
dtype | inB = 1 |
||
) |
Create an array of the given shape and populate it with random samples from the "weibull" distribution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.weibull.html#numpy.random.weibull
generator | instance of a random number generator |
inShape | |
inA | (default 1) |
inB | (default 1) |
dtype nc::random::detail::weibull | ( | GeneratorType & | generator, |
dtype | inA = 1 , |
||
dtype | inB = 1 |
||
) |
Single random value sampled from the "weibull" distribution.
NumPy Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.weibull.html#numpy.random.weibull
generator | instance of a random number generator |
inA | (default 1) |
inB | (default 1) |